光合作用中的碳反应光合作用的反应式是:6CO2+6H2O→C6H1206(CH2O)+6O2,也就是二氧化碳+水=光(条件) 叶绿体(场所)→有机物(储存能量)+氧气。由公式可知,光合作用在光下才能进行,光是光合作用不可缺少的条件。光合作用的场所是叶绿体,含有叶绿素的细胞在光下才能进行光合作用。光合作用的实质是把二氧化碳和水合成有机物,释放氧气,同时储存能量的过程。光合作用主要包括光反应、暗反应两个阶段。光反应阶段的反应式为H2O+ADP+Pi+NADP+→O2+ATP+NADPH+H+。在此过程中能量转化为叶绿素把光能先转化为电能,再转化为活跃的化学能并储存在ATP中。暗反应阶段是利用光反应生成NADPH和ATP进行碳的同化作用,使气体二氧化碳还原为糖类。反应式为CO2+ATP+NADPH+H+→(CH2O)+ADP+Pi+NADP+,(CH2O)表示糖类。该反应的能量转化过程为ATP中活跃的化学能转化变为糖类等有机物中稳定的化学能。光合作用的意义:①提供了物质来源和能量来源。②维持大气中氧和二氧化碳含量的相对稳定。③对生物的进化具有重要作用。总之,光合作用是生物界最基本的物质代谢和能量代谢。碳在光合作用中转化的途径是应该是从二氧化碳到三碳化合物再到(CH2O)”。光合作用,即光能合成作用,是植物、藻类和某些细菌,在可见光的照射下,利用光合色素,将二氧化碳(或硫化氢)和水转化为有机物,并释放出氧气(或氢气)的生化过程。相关的反应式:H2O→2H+1/2O2(水的光解)NADP++2e-+H+→NADPH(递氢)ADP+Pi→ATP(递能)CO2+C5化合物→2C3化合物(二氧化碳的固定)2C3化合物+4NADPH+ATP→(CH2O)+C5化合物+H2O(有机物的生成或称为C3的还原)ATP→ADP+PI(耗能)能量转化过程:光能→不稳定的化学能(能量储存在ATP的高能磷酸键)→稳定的化学能(糖类即淀粉的合成)光合作用的实质是把CO2和H2O转变为有机物(物质变化)和把光能转变成ATP中活跃的化学能再转变成有机物中的稳定的化学能(能量变化)。CO2+H2O(光照、酶、叶绿体)==(CH2O)+O2(CH2O)表示糖类。比较光合碳同化三条途径的主要异同点在类囊体薄膜上,水光解成为还原氢和氧气,ADP与Pi吸收能量结合生成ATP;在叶绿体基质中,C5结合CO2生成两分子C3;在叶绿体基质中,ATP水解为ADP与Pi释放能量,C3吸收能量并结合第一过程中水生成的还原氢,生成糖类和C5。光合作用场所:绿色植物利用太阳的光能,同化二氧化碳(CO2)和水(H2O)制造有机物质并释放氧气的过程,称为光合作用。光合作用的场所是叶绿体。光合作用所产生的有机物主要是碳水化合物,并释放出能量。光合作用主要包括光反应、暗反应两个阶段,涉及光吸收、电子传递、光合磷酸化、碳同化等重要反应步骤,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。叶绿体是含有绿色色素(主要为叶绿素a、b)的质体,是质体的一种,是高等植物和一些藻类所特有的能量转换器,是绿色植物进行光合作用的场所,存在于高等植物叶肉、幼茎的一些细胞内,藻类细胞中也含有。叶绿体的形状、数目和大小随不同植物和不同细胞而异。光合作用碳同化途径有何不同呢小麦和玉米光合碳的同化过程都需要进行光合反应,首先小麦的光合量能力不及玉米。但是他们的过程都是相似的。光合作用的光反应和碳反应的区别光合作用光合作用(Photosynthesis)是绿色植物(包括藻类)吸收光能,把二氧化碳和水合成富能有机物,同时释放氧气的过程,反应条件包括光色素分子酶、二氧化碳(或硫化氢)。 光合作用主要包括光反应、暗反应两个阶段,对实现自然界的能量转换、维持大气的碳-氧平衡具有重要意义。光合作用的碳同化有哪些途径暗反应的三种方式分别为C3途径,C4途径和CAM途径。C3途径是指在某些高等植物光合作用的暗反应过程中,一个CO2在RuBP(1,5-二磷酸核酮糖)羧化酶的催化下,在有镁离子的环境中,被一个RuBP固定后形成两个三碳化合物(3-磷酸甘油酸)。有一些植物对CO2的固定反应是在叶肉细胞的胞质溶胶中进行的,在磷酸烯醇式丙酮酸羧化酶的催化下将CO2连接到磷酸烯醇式丙酮酸(PEP)上·形成四碳酸:草酰乙酸(oxaloacetate),这种固定CO2的方式称为C4途径。C4植物每同化1分子CO2,需要消耗5分子ATP和2分子NADPH。CAM植物特别适应于干旱地区,其特点是气孔夜间张开,白天关闭。夜间二氧化碳(CO2)能够进入叶中,也被固定在C4化合物中,与C4植物一样。白天有光时则C4化合物释放出的二氧化碳(CO2),参与卡尔文循环。光合碳同化的三种途径C4植物和CAM植物都是低光呼吸植物,都具有光合碳同化最基本的C3途径将cQ还原成糖。但C4植物另有C4途径起“CO2泵”作用,CAM植物另有CAM途径起夜间暂时贮存C02作用,所以C4植物与CAM植物在代谢上的主要区别在于C4途径和CAM途径上的差异。(1)C4途径的羧化和脱羧在空问上是分开的,即羧化在叶肉细胞中进行,脱羧在鞘细胞中进行,而在时间上没有分开,均在白天进行。(2)CAM途径的羧化和脱羧在时间上是分开的,即羧化在夜晚进行,脱羧在白天进行,而在空间上没有分开,均在叶肉细胞叶绿体中进行。光合作用碳同化途径有何不同之处c4植物和CAM植物的光合碳同化异同点分述如下:C3途径是碳同化的基本途径,也称为卡尔文循环或光合碳循环,可合成糖类、淀粉等多种有机物。整个循环有RUBP与CO2的羧化开始到RUBP再生结束,在叶绿体基质中进行,全过程分为羧化、还原、再生3个阶段。由此途径CO2固定后形成的最终产物3-磷酸甘油酸(PGA)为三碳化合物。C4途径和CAM途径都只起固定CO2的作用,最终还是通过C3途径合成光合产物等。该过程中CO2的最初固定是于叶肉细胞质中进行的,而CO2的最终还原是在维管束鞘细胞的叶绿体中进行。CO2固定后的最终产物为草酰乙酸(OAA)。C3途径是最基本的,无论是C4及CAM途径都要通过C3途径来同化CO2。没有C3途径就没有后两者。 碳中和 光合作用碳排放,我认为指的是自然界生物为了生存而排放的二氧化碳。而碳中和却是为了维持地球二氧化碳总量不变、而采取措施消耗相应数量的二氧化碳,使二氧化碳总量维持一个平衡,比如多种树、多植草,通过光合作用消耗二氧化碳释放氧气。但说到底,碳中和涉及的是一个国家的发展权,对于不发达国家,发展与碳中和是难以兼顾的,而发达国家已经历过了发展时期。然而,对我们国家来说,却也是个机遇。为了研究光合作用中碳的同化和去向高等植物的碳同化途径有三条,即C3途径、C4途径和CAM(景天酸代谢)途径。C3途径是碳同化的基本途径,可合成糖类,淀粉等多种有机物.C4途径和CAM途径都只起固定CO2的作用,最终还是通过C3途径合成光合产物等.C3途径是最基本的,无论是C4及CAM途径都要通过C3途径来同化CO2。没有C3途径就没有后两者。CAM途径与C4途径基本相同,二者的差别在于C4植物的两次羧化反应是在空间上(叶肉细胞和维管束鞘细胞)分开的,而CAM植物则是在时间上(黑夜和白天)分开的
